Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2309226, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477513

RESUMO

Here, an unprecedented phenomenon in which 7-coordinate lanthanide metallomesogens, which align via hydrogen bonds mediated by coordinated H2 O molecules, form micellar cubic mesophases at room temperature, creating body-centered cubic (BCC)-type supramolecular spherical arrays, is reported. The results of experiments and molecular dynamics simulations reveal that spherical assemblies of three complexes surrounded by an amorphous alkyl domain spontaneously align in an energetically stable orientation to form the BCC structure. This phenomenon differs greatly from the conventional self-assembling behavior of 6-coordinated metallomesogens, which form columnar assemblies due to strong intermolecular interactions. Since the magnetic and luminescent properties of different lanthanides vary, adding arbitrary functions to spherical arrays is possible by selecting suitable lanthanides to be used. The method developed in this study using 7-coordinate lanthanide metallomesogens as building blocks is expected to lead to the rational development of micellar cubic mesophases.

2.
Nano Lett ; 22(24): 9964-9971, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36516275

RESUMO

In a conventional magnetic material, a long-range magnetic order develops in three dimensions, and reducing a layer number weakens its magnetism. Here we demonstrate anomalous layer-number-independent ferromagnetism down to the two-dimensional (2D) limit in a metastable phase of Cr3Te4. We fabricated Cr3Te4 thin films by molecular-beam epitaxy and found that Cr3Te4 could host two distinct ferromagnetic phases characterized with different Curie temperatures (TC). One is the bulk-like "high-TC phase" showing room-temperature ferromagnetism, which is consistent with previous studies. The other is the metastable "low-TC phase" with TC ≈ 160 K, which exhibits a layer-number-independent TC down to the 2D limit in marked contrast with the conventional high-TC phase, demonstrating a purely 2D nature of its ferromagnetism. Such significant differences between two distinct phases could be attributed to a small variation in the doping level, making this material attractive for future ultracompact spintronics applications with potential gate-tunable room-temperature 2D ferromagnetism.

3.
Phys Chem Chem Phys ; 24(27): 16680-16686, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35766583

RESUMO

The ligand field (LF) of transition metal ions is a crucial factor in realizing the mechanism of novel physical and chemical properties. However, the low-crystallinity state, including the amorphous state, precludes the clarification of the electronic structural relationship of transition metal ions using crystallographic techniques, ultraviolet and infrared optical methods, and magnetometry. Here, we demonstrate that soft X-ray 2p → 3d core-level absorption spectroscopy (L2,3-edge XAS) systematically revealed the local 3d electronic states, including in the LF, of nitrogen-coordinated transition-metal ions for low-crystallinity cyanide-bridged metal-organic frameworks (MOFs) M[Ni(CN)4] (MNi; M = Mn, Fe, Co, Ni) and Ni[Pd(CN)4] (NiPd). In NiNi and NiPd, N-coordinated Ni ions with square-planar symmetry exhibit strong orbital hybridization and ligand-to-metal charge transfer effects. In MnNi, FeNi, and CoNi, the correlation between the crystalline electric field splitting in the LF and the transition metal-nitrogen bonding length is revealed using the multiplet LF theory. Regardless of the different local symmetries, our results indicate that L2,3-edge XAS is a powerful tool for gaining element-specific knowledge about the transition-metal ion characterizing the functionality of low-crystallinity MOFs and will be the foundation for an attractive platform, such as adsorption/desorption materials.

4.
J Phys Chem Lett ; 13(19): 4207-4214, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35512383

RESUMO

Hematite (α-Fe2O3) is a photoelectrode for the water splitting process because of its relatively narrow bandgap and abundance in the earth's crust. In this study, the photoexcited state of a hematite thin film was investigated with femtosecond oxygen K-edge X-ray absorption spectroscopy (XAS) at the PAL-XFEL in order to follow the dynamics of its photoexcited states. The 200 fs decay time of the hole state in the valence band was observed via its corresponding XAS feature.

5.
J Chem Phys ; 156(6): 064504, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35168349

RESUMO

We have measured the lattice volume of ice VIII in different pressure-temperature pathways and found that the volume depends on the pathway, implying that deviatoric stress makes the volume larger. Dense ice is in the ice VIII phase with the molar volume of 6.56 cm3 and in a high-pressure phase with the molar volume of 6.45 cm3 at 10 K where the pressure can be estimated as 57.0 ± 3.4 and 60.4 ± 3.6 GPa, respectively, based on the third-order Birch-Murnaghan equation with parameters determined in this study (K0 = 30.8 ± 1.3 GPa and K'0 = 3.7 ± 0.1 with V0 fixed to 12.030 cm3).

6.
J Phys Chem C Nanomater Interfaces ; 125(13): 7329-7336, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33859771

RESUMO

Copper tungstate (CuWO4) is an important semiconductor with a sophisticated and debatable electronic structure that has a direct impact on its chemistry. Using the PAL-XFEL source, we study the electronic dynamics of photoexcited CuWO4. The Cu L3 X-ray absorption spectrum shifts to lower energy upon photoexcitation, which implies that the photoexcitation process from the oxygen valence band to the tungsten conduction band effectively increases the charge density on the Cu atoms. The decay time of this spectral change is 400 fs indicating that the increased charge density exists only for a very short time and relaxes electronically. The initial increased charge density gives rise to a structural change on a time scale longer than 200 ps.

7.
Inorg Chem ; 60(5): 3338-3344, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33591169

RESUMO

Amorphous coordination polymers and metal-organic frameworks (MOFs) have attracted much attention owing to their various functionalities. Here, we demonstrate the tunable water adsorption behavior of a series of amorphous cyanide-bridged MOFs with different metals (M[Ni(CN)4]: MNi; M = Mn, Fe, and Co). All three compounds adsorb up to six water molecules at a certain vapor pressure (Pads) and undergo conversion to crystalline Hofmann-type MOFs, M(H2O)2[Ni(CN)4]·4H2O (MNi-H2O; M = Mn, Fe, and Co). The Pads of MnNi, FeNi, and CoNi for water adsorption is P/P0 = 0.4, 0.6, and 0.9, respectively. Although the amorphous nature of these materials prevented structural elucidation using X-ray crystallography techniques, the local-scale structure around the N-coordinated M2+ centers was analyzed using L2,3-, K-edge X-ray absorption fine structure, and magnetic measurements. Upon hydration, the coordination geometry of these metal centers changed from tetrahedral to octahedral, resulting in significant reorganization of the MOF local structure. On the other hand, Ni[Ni(CN)4] (NiNi) containing square-planar Ni2+ centers did not undergo significant structural transformation and therefore abruptly adsorbed H2O in the low-pressure region. We could thus define how changes in the bond lengths and coordination geometry are related to the adsorption properties of amorphous MOF systems.

8.
Nano Lett ; 21(4): 1807-1814, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33538606

RESUMO

Magnetocrystalline anisotropy, a key ingredient for establishing long-range order in a magnetic material down to the two-dimensional (2D) limit, is generally associated with spin-orbit interaction (SOI) involving a finite orbital angular momentum. Here we report strong out-of-plane magnetic anisotropy without orbital angular momentum, emerging at the interface between two different van der Waals (vdW) materials, an archetypal metallic vdW material NbSe2 possessing Zeeman-type SOI and an isotropic vdW ferromagnet V5Se8. We found that the Zeeman SOI in NbSe2 induces robust out-of-plane magnetic anisotropy in V5Se8 down to the 2D limit with a more than 2-fold enhancement of the transition temperature. We propose a simple model that takes into account the energy gain in NbSe2 in contact with a ferromagnet, which naturally explains our observations. Our results demonstrate a conceptually new magnetic proximity effect at the vdW interface, expanding the horizons of emergent phenomena achievable in vdW heterostructures.

9.
ACS Omega ; 5(37): 23718-23723, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32984690

RESUMO

Overexpression of human epidermal growth factor receptor 2 (HER2) is associated with more frequent cancer recurrence and metastasis. Sensitive sensing of HER2 in living breast cancer cells is crucial in the early stages of cancer and to further understand its role in cells. Biomedical imaging has become an indispensable tool in the fields of early cancer diagnosis and therapy. In this study, we designed and synthesized platinum (Pt) nanocluster bionanoprobes with red emission (Ex/Em = 535/630 nm) for fluorescence imaging of HER2. Our Pt nanoclusters, which were synthesized using polyamidoamine (PAMAM) dendrimer and preequilibration, exhibited approximately 1% quantum yield and possessed low cytotoxicity, ultrasmall size, and excellent photostability. Furthermore, combined with ProteinA as an adapter protein, we developed Pt bionanoprobes with minimal nonspecific binding and utilized them as fluorescent probes for highly sensitive optical imaging of HER2 at the cellular level. More importantly, molecular probes with long-wavelength emission have allowed visualization of deep anatomical features because of enhanced tissue penetration and a decrease in background noise from tissue scattering. Our Pt nanoclusters are promising fluorescent probes for biomedical applications.

10.
Phys Chem Chem Phys ; 22(5): 2685-2692, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31641716

RESUMO

Hematite, α-Fe2O3, is an important semiconductor for photoelectrochemical water splitting. Its low charge carrier mobility and the presence of midgap states provide favourable conditions for electron-hole recombination, hence affecting the semiconductor's photoelectrochemical efficiency. The nature of the excited state and charge carrier transport in hematite is strongly debated. In order to further understand the fundamental properties of the hematite photoexcited state, we conducted femtosecond 2p (L3) X-ray absorption (XAS) and 2p3d resonant inelastic scattering (RIXS) measurements on hematite thin-films at the Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL). The observed spectral changes and kinetic processes are in agreement with previous 3p XAS reports. The potential additional information that could be acquired from 2p3d RIXS experiments is also discussed.

11.
Nano Lett ; 19(12): 8806-8810, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31714089

RESUMO

The discoveries of intrinsic ferromagnetism in atomically thin van der Waals crystals have opened a new research field enabling fundamental studies on magnetism at two-dimensional (2D) limit as well as development of magnetic van der Waals heterostructures. Currently, a variety of 2D ferromagnetism has been explored mainly by mechanically exfoliating "originally ferromagnetic (FM)" van der Waals crystals, while a bottom-up approach by thin-film growth technique has demonstrated emergent 2D ferromagnetism in a variety of "originally non-FM" van der Waals materials. Here we demonstrate that V5Se8 epitaxial thin films grown by molecular-beam epitaxy exhibit emergent 2D ferromagnetism with intrinsic spin polarization of the V 3d electrons despite that the bulk counterpart is "originally antiferromagnetic". Moreover, thickness-dependence measurements reveal that this newly developed 2D ferromagnet could be classified as an itinerant 2D Heisenberg ferromagnet with weak magnetic anisotropy, broadening a lineup of 2D magnets to those potentially beneficial for future spintronics applications.

12.
Chem Commun (Camb) ; 55(61): 8931-8934, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31290901

RESUMO

A new perovskite-type cuprate PrCuO3 has been synthesized by high-pressure oxygen annealing. Synchrotron X-ray powder diffraction and absorption spectroscopy revealed that PrCuO3 crystallizes in the GdFeO3-type structure with cooperative Jahn-Teller distortion, forming one-dimensional chains of corner-shared CuO4 plaquettes with nearly divalent Cu ions.

13.
Chemphyschem ; 13(12): 2937-44, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-22674527

RESUMO

Anodization of α-Fe(2)O(3) (hematite) electrodes in alkaline electrolyte under constant potential conditions the electrode surface in a way that an additional current wave occurs in the cyclic voltammogram. The energy position of this current wave is closely below the potential of the anodization treatment. Continued cycling or exchanging of the electrolyte causes depletion of this new feature. The O 1s and Fe 2p core-level X-ray photoelectron spectra (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectra of such conditioned hematite exhibit a chemical shift towards higher binding energies, in line with the general perception that anodization generates oxide species with dielectric properties. The valence band XPS and particularly the iron resonant valence band photoemission spectra, however, are shifted towards the opposite direction, that is, towards the Fermi energy, suggesting that hole doping on hematite has taken place during anodization. Quantitative analysis of the Fe 2p resonant valence band photoemission spectra shows that the spectra obtained at the Fe 2p absorption threshold are shifted by virtually the same energy as the anodization potential towards the Fermi energy. The tentative interpretation of this observation is that anodization forms a surface film on the hematite that is specific to the anodization potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...